7/8" RADIAFLEX® RLKU Cable, A-series

Product Description

RADIAFLEX® functions as a distributed antenna to provide communications in tunnels, mines and large building complexes and is the solution for any application in confined areas.

Slots in the copper outer conductor allow a controlled portion of the internal RF energy to be radiated into the surrounding environment. Conversely, a signal transmitted near the cable will couple into the slots and be carried along the cable length.

 $\label{eq:result} \ensuremath{\mathsf{RADIAFLEX}}\xspace^{\mbox{w}} \mbox{is used for both one-way and two-way communication systems and because of its broadband capability, a single radiating cable can handle multiple communication systems simultaneously.$

This RADIAFLEX® radiating cable utilize a low-loss cellular polyethylene foam dielectric and a smooth copper outer conductor which offers a superior electrical performance together with good bending properties.

Features/Benefits

Max. operating frequency:

Size

Jacket

Cable Type:

Jacket Description

Ultra wideband from 30 MHz to 2700 MHz

• For applications in tunnels and buildings

Low coupling loss variations
 Technical Specifications

RLK cable, A-series					
252502141105					
PERFORMANCE					
Frequency,		Coupling	Coupling		
MHz	Loss, dB/100 m	Loss	Loss		
	(dB/100 ft)	50%, dB	95%, dB		
75	1,02 (0,31)	52 (56)	64 (68)		
150	1,46 (0,44)	61 (65)	73 (77)		
450	2,67 (0,81)	69 (72)	81 (84)		
800	4,07 (1,24)	67 (69)	74 (77)		
870	4,23 (1,29)	63 (66)	70 (74)		
900	4,34 (1,32)	63 (66)	71 (74)		
960	4,62 (1,41)	64 (66)	71 (74)		
1800	7,70 (2,35)	59 (62)	67 (70)		
1900	8,18 (2,50)	59 (62)	67 (70)		
2000	8,66 (2,64)	60 (63)	67 (71)		
2200	9,94 (3,03)	58 (61)	66 (69)		
2400	11,68 (3,56)	57 (60)	65 (68)		
2600	13,7 (4,18)	58 (60)	66 (68)		
0					

14,95 (4,56) 61 (63) 69 (71)

2700

Standard conditions

RLK JFN Halogen free, non corrosive, flame

[in] [MHz]

Halogen free, non corrosive, flame and fire retardant, low smoke, polyolefin Test methods for fire behaviour of cable : IEC 60754-1/-2 smoke emission: halogen free, non corrosive IEC 61034 low smoke IEC 60332-1 flame retardant IEC 60332-3-24 fire retardant UL1666, ASTM E 662, NES711 and NES713

7/8"

2700

Slot Design		Groups of vertical slots at short intervals
Impedance	[Ω]	50 +/-2
Relative propagation velocity	[%]	89
Capacitance	[pF/m (pF/ft)]	75 (22.9)
Inductance	[µH/m (µH/ft)]	0.1875 (0.057)
DC-resistance inner conductor	[Ω/km (Ω/1000ft)]	1.74 (0.53)
DC-resistance outer conductor	[Ω/km (Ω/1000ft)]	2.52 (0.77)
Outer Conductor Material		Overlapping Copper Foil
Inner Conductor Material		Copper Tube
Diameter over Jacket	[mm (in)]	28.5 (1.12)
Diameter Outer Conductor	[mm (in)]	23.8 (0.94)
Diameter Inner Conductor	[mm (in)]	9.3 (0.37)
Minimum Bending Radius, Single Bend	[mm (in)]	350 (13:8)
Cable Weight	[kg/m (lb/ft)]	0.55 (0.37)
Max. tensile force	[N (lb)]	2300 (507)
Indication of Slot Alignment		Bulge atop slots
Storage temperature	[°C (°F)]	-70 to +85 (-94 to +185)
Installation temperature	[°C (°F)]	-25 to +60 (-13 to +140)
Operation temperature	[°C (°F)]	-40 to +85 (-40 to +185)
Stop bands	[MHz]	650-750, 1330-1430, 2025-2100
Recommended / maximum clamp spacing	[m (ft)]	0.9 (3)
Minimum Distance to Wall	[mm (in)]	80 (3.15)
Length	[m (ft)]	

· Coupling loss as well as longitudinal attenuation of RADIAFLEX® cables are measured by the free

• Coupling loss values are measured with a radial (below 650 MHz) or parallel (above 650 MHz)

The coupling loss values given in brackets are average values of all three spatial orientations

• Coupling loss values are given with a tolerance of +5 dB and longitudinal loss values with a tolerance of +5%. Note: Measured values below nominal are better. They are not limited by any

In case of a conflict of operational and stop band, please contact RFS for further assistance.
As with any radiating cable, the performance in building or tunnel environments may deviate from

۶

Notes

RFS The Clear Choice ® Please visit us on the internet at http://www.rfsworld.com/

space method according to IEC 61196-4.

figures based on free space method.

(radial, parallel and orthogonal) of dipole antenna.

orientated dipole antenna.

tolerance-range.

Rev. 2015/04/24

RLKU78-50JFNA

Radio Frequency Systems