

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 85° HPBW, 3x RET

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Three internal RETs for independent tilt on all three bands

General Specifications

Band

Antenna Type Sector

Color Light gray

Effective Projective Area (EPA), frontal $0.37 \text{ m}^2 \mid 3.983 \text{ ft}^2$ Effective Projective Area (EPA), lateral $0.31 \text{ m}^2 \mid 3.337 \text{ ft}^2$

Grounding TypeRF connector inner conductor and body grounded to reflector and

mounting bracket

Performance Note

Outdoor usage | Wind loading figures are validated by wind tunnel

Multiband

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 7-16 DIN Female

RF Connector Location Bottom

RF Connector Quantity, high band 4
RF Connector Quantity, low band 2
RF Connector Quantity, total 6

Remote Electrical Tilt (RET) Information, General

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 1 female | 1 male

Dimensions

 Width
 301 mm | 11.85 in

 Length
 2438 mm | 95.984 in

Page 1 of 4

Depth

180 mm | 7.087 in

Array Layout

Array	Freq (MHz)	Conns	RET (MRET)	AISG RET UID
R1	698-896	1-2	1	ARxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Y1	1695-2360	3-4	2	ARxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Y2	1695-2360	5-6	3	ARxxxxxxxxxxxxxx.3

Left Right Bottom

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 896 MHz

Polarization ±45°

Remote Electrical Tilt (RET) Information, Electrical

Protocol 3GPP/AISG 2.0 (Multi-RET)

Power Consumption, idle state, maximum 2 W
Power Consumption, normal conditions, maximum 13 W

COMMSCSPE®

Input Voltage 10–30 Vdc

Internal RET High band (2) | Low band (1)

Electrical Specifications

Frequency Band, MHz	698-806	806–896	1695–1880	1850–1990	1920–2200	2300–2360
Gain, dBi	15.6	15.6	17	17.6	17.9	17.8
Beamwidth, Horizontal, degrees	81.5	83	81.5	79	79	79.7
Beamwidth, Vertical, degrees	8.9	8.1	5.6	5.2	5	4.6
Beam Tilt, degrees	0–10	0–10	0–8	0–8	0–8	0–8
USLS (First Lobe), dB	16	17	14	14	14	15
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	300	300	300	300	300	250

Electrical Specifications, BASTA

Frequency Band, MHz	698–806	806–896	1695–1880	1850–1990	1920–2200	2300–2360
Gain by all Beam Tilts, average, dBi	15.4	15.4	16.6	17.3	17.6	17.6
Gain by all Beam Tilts Tolerance, dB	±0.2	±0.3	±0.6	±0.2	±0.4	±0.3
Gain by Beam Tilt, average, dBi	0 ° 15.2 5 ° 15.5 10 ° 15.5	0 ° 15.1 5 ° 15.4 10 ° 15.5	0 ° 16.6 4 ° 16.6 8 ° 16.4	0 ° 17.3 4 ° 17.4 8 ° 17.2	0 ° 17.6 4 ° 17.7 8 ° 17.5	0 ° 17.5 4 ° 17.7 8 ° 17.3
Beamwidth, Horizontal Tolerance, degrees	±2.3	±1.4	±4.5	±2.4	±2.9	±2.6
Beamwidth, Vertical Tolerance, degrees	±0.5	±0.5	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	17	18	15	16	16	17
Front-to-Back Total Power at 180° ± 30°, dB	22.5	24	27.4	25.6	25	27
CPR at Boresight, dB	20	20	21	22	18	24.8
CPR at Sector, dB	13.7	16	12.5	12	11	6.1

Mechanical Specifications

Wind Loading at Velocity, frontal 393.0 N @ 150 km/h | 89.0 lbf @ 150 km/h

Page 3 of 4

Wind Loading at Velocity, lateral 330.0 N @ 150 km/h | 74.2 lbf @ 150 km/h

Wind Loading at Velocity, maximum 170.2 lbf @ 150 km/h | 757.0 N @ 150 km/h

Wind Speed, maximum 241 km/h | 149.75 mph

Packaging and Weights

 Width, packed
 409 mm | 16.102 in

 Depth, packed
 299 mm | 11.772 in

 Length, packed
 2561 mm | 100.827 in

 Net Weight, without mounting kit
 22.5 kg | 49.604 lb

 Weight, gross
 35 kg | 77.162 lb

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT- _ Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

